# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## catena-Poly[[tetraaquazinc(II)]-µ-2,2'dihydroxy-5,5'-diazenediyldibenzoato]

## Yu-Hui Tan,<sup>a</sup>\* Qing-Song Li,<sup>a</sup> Xian-Ping Luo<sup>b</sup> and Xiao-Bing Xie<sup>c</sup>

<sup>a</sup>Department of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China, <sup>b</sup>School of Resources and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China, and <sup>c</sup>Department of Managing Equipment, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China Correspondence e-mail: tyxcn@163.com

Received 18 November 2007; accepted 1 December 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.098; data-to-parameter ratio = 11.8.

In the title compound,  $[Zn(C_{14}H_8N_2O_6)(H_2O)_4]_n$ , the 2,2'dihydroxy-5,5'-diazenediyldibenzoate ligand acts as a carboxylate bridge, leading to the formation of a polymeric chain running along the [110] direction. The Zn<sup>II</sup> atom is hexacoordinated in a distorted octahedral geometry by six O atoms [Zn-O = 2.055 (4)-2.132 (3) Å] from two carboxylate ligands and four water molecules. The crystal packing is stabilized by intermolecular  $O-H\cdots O$ ,  $O-H\cdots N$  and  $C-H\cdots O$ hydrogen bonds, and two  $\pi-\pi$  interactions. The centroidcentroid distances are 3.803 (16) and 3.804 (17) Å.

### **Related literature**

For related literature, see: Klotz (2005); Tang, Tan & Cao (2007); Tang, Tan, Chen & Cao (2007); Tang, Yang *et al.* (2007).



## **Experimental**

Crystal data  $[Zn(C_{14}H_8N_2O_6)(H_2O)_4]$   $M_r = 437.66$ Monoclinic,  $P2_1/c$ a = 9.510 (2) Å

b = 11.255 (3) Å c = 16.214 (4) Å  $\beta = 107.019 (3)^{\circ}$  $V = 1659.5 (7) \text{ Å}^{3}$ 

#### Z = 4Mo $K\alpha$ radiation

 $\mu = 1.54 \text{ mm}^{-1}$ 

#### Data collection

| Bruker SMART APEX CCD area           |
|--------------------------------------|
| detector diffractometer              |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2000)               |
| $T_{\min} = 0.699, T_{\max} = 0.861$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$   $wR(F^2) = 0.098$  S = 1.103278 reflections 277 parameters

#### Table 1

Selected geometric parameters (Å, °).

| Zn1–O3W          | 2.055 (4)   | $Zn1-O2^{i}$       | 2.086 (3)   |
|------------------|-------------|--------------------|-------------|
| Zn1-O4W          | 2.069 (4)   | Zn1-O5             | 2.097 (3)   |
| Zn1 - O1W        | 2.075 (3)   | Zn1-O2W            | 2.132 (3)   |
|                  |             |                    |             |
| O3W - Zn1 - O4W  | 177.75 (16) | O1W-Zn1-O5         | 94.52 (13)  |
| O3W - Zn1 - O1W  | 92.90 (16)  | $O2^i - Zn1 - O5$  | 85.89 (11)  |
| O4W - Zn1 - O1W  | 89.28 (15)  | O3W - Zn1 - O2W    | 88.49 (17)  |
| $O3W-Zn1-O2^{i}$ | 89.72 (15)  | O4W - Zn1 - O2W    | 92.21 (18)  |
| $O4W-Zn1-O2^{i}$ | 88.10 (14)  | O1W - Zn1 - O2W    | 86.44 (15)  |
| $O1W-Zn1-O2^{i}$ | 177.36 (13) | $O2^i - Zn1 - O2W$ | 93.32 (13)  |
| O3W-Zn1-O5       | 87.93 (16)  | O5-Zn1-O2W         | 176.33 (15) |
| O4W-Zn1-O5       | 91.35 (16)  |                    |             |
|                  |             |                    |             |

T = 296 (2) K

 $R_{\rm int} = 0.034$ 

refinement

 $\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$ 

 $0.25 \times 0.22 \times 0.10 \text{ mm}$ 

10784 measured reflections 3278 independent reflections

3036 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Symmetry code: (i) x - 1, y + 1, z.

| Table 2         |                  |
|-----------------|------------------|
| Hydrogen-bond g | geometry (Å, °). |

| $D - H \cdot \cdot \cdot A$  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|----------|-------------------------|-------------------------|--------------------------------------|
| O1W−H1WA···O6                | 0.84 (6) | 1.86 (6)                | 2.677 (5)               | 168 (6)                              |
| $O1W-H1WB\cdots N2^{ii}$     | 0.88 (7) | 2.32 (6)                | 3.058 (5)               | 143 (6)                              |
| $O2W - H2WA \cdots O1^{i}$   | 1.01 (6) | 1.63 (6)                | 2.636 (5)               | 170 (6)                              |
| O2W−H2WB···O3 <sup>iii</sup> | 0.87 (7) | 2.44 (8)                | 2.997 (5)               | 123 (6)                              |
| O3W−H3WA···N1 <sup>iv</sup>  | 0.74 (6) | 2.17 (6)                | 2.893 (5)               | 164 (5)                              |
| O3W−H3WB···O6 <sup>ii</sup>  | 0.78 (8) | 1.95 (7)                | 2.664 (5)               | 152 (7)                              |
| $O4W-H4WA\cdots O4^{v}$      | 0.79 (7) | 2.20 (8)                | 2.875 (6)               | 144 (8)                              |
| O4W−H4WB···O1 <sup>ii</sup>  | 0.89 (6) | 1.85 (6)                | 2.703 (5)               | 160 (6)                              |
| $O3-H3A\cdots O2$            | 0.82     | 1.80                    | 2.528 (4)               | 147                                  |
| $O4-H4A\cdots O5$            | 0.82     | 1.81                    | 2.537 (4)               | 148                                  |
| $C2-H2A\cdots O1W^{vi}$      | 0.93     | 2.53                    | 3.405 (6)               | 157                                  |
|                              |          |                         |                         |                                      |

Symmetry codes: (i) x - 1, y + 1, z; (ii) -x + 2,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) x - 1,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ; (iv) -x + 2, -y + 1, -z; (v) -x + 1, -y + 1, -z; (vi) -x + 2,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Gannan Medical University Master Development Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2258).

## References

- Bruker (2000). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Klotz, U. (2005). Dig. Liver Dis. 37, 381–388.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tang, Y.-Z., Tan, Y.-H. & Cao, Y.-W. (2007). Acta Cryst. E63, m1175m1176.

- Tang, Y.-Z., Tan, Y.-H., Chen, S.-H. & Cao, Y.-W. (2007). Z. Anorg. Allg. Chem. 633, 332–335.
- Tang, Y.-Z., Yang, S.-P., Tan, Y.-H., Chen, S.-H., Cao, Y.-W. & Wang, P. (2007). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 23, 70–74.

supplementary materials

Acta Cryst. (2008). E64, m276-m277 [doi:10.1107/S1600536807064860]

## catena-Poly[[tetraaquazinc(II)]-#-2,2'-dihydroxy-5,5'-diazenediyldibenzoato]

## Y.-H. Tan, Q.-S. Li, X.-P. Luo and X.-B. Xie

### Comment

Olsalazine, 2,2'-dihydroxy-5,5'-diazenediyldibenzoic acid, has been widely used to prevent and treat the inflammatory bowel diseases, such as ulcerative colitis (Klotz, 2005). In previous work, we have synthesized a serial of Zn (Tang, Tan, Chen & Cao, 2007), Cd and Co (Tang, Yang *et al.*, 2007) complexes with phenanthroline as auxiliary ligand. We have also reported a Mn complex of olsalazine (Tang, Tan & Cao, 2007), but the zinc complex with single olsalazine as building block has not been reported yet. Here we reported the crystal structure of the title compound, (I), a new zinc complex of olsalazine.

In (I), the Zn atom is hexa-coordinated (Fig. 1) by two O atoms from two *L* ligands [H<sub>2</sub>L=3,3-azo-bis(6-hydroxybenzoic acid)] and four water molecules in a distorted octahedral geometry (Table 1). Two ligands are *cis* to each other in an octahedral environment. Each ligand *L* acts as a carboxylate bridge, which leads to formation of a polymeric chain running in the direction [1T0]. Two neighbouring polymeric chains are paired by  $\pi \cdots \pi$  interactions between the aromatic rings; the distances  $Cg1 \cdots Cg1^i$  and  $Cg2 \cdots Cg2^i$  are 3.803 (16) and 3.804 (17) Å, respectively [*Cg*1 and *Cg*2 are centroids of C2—C7 and C8—C13 rings, respectively; symmetry code: (i) x - 1, y - 1, z]. The crystal packing is further stabilized by the intermolecular O—H…O, O—H…N and C—H…O hydrogen bonds (Table 2).

## Refinement

The hydroxy and C-bound H atoms were placed in calculated positions (C—H = 0.93 Å and O—H = 0.82 Å) and included in the refinement in the riding-model approximation, with  $U_{iso}(H) = 1.2U_{eq}(C,O)$ . The water H atoms were located in a difference Fourier map and refined isotropically.

## **Figures**



Fig. 1. A part of the polymeric structure of (I), showing displacement ellipsoids drawn at the 30% probability level and the atomic labelling. Unlabelled atoms are related to labelled atoms by the symmetry code (x - 1, y + 1, z).

## catena-Poly[[tetraaquazinc(II)]- µ-2,2'-dihydroxy-5,5'-diazenediyldibenzoato]

Crystal data  $[Zn(C_{14}H_8N_2O_6)(H_2O)_4]$   $M_r = 437.66$ Monoclinic,  $P2_1/c$ 

 $F_{000} = 896$  $D_x = 1.752 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation

| Hall symbol: -P 2ybc            |
|---------------------------------|
| <i>a</i> = 9.510 (2) Å          |
| <i>b</i> = 11.255 (3) Å         |
| c = 16.214 (4)  Å               |
| $\beta = 107.019 \ (3)^{\circ}$ |
| $V = 1659.5 (7) \text{ Å}^3$    |
| Z = 4                           |

## Data collection

| $\lambda = 0.71073 \text{ Å}$             |
|-------------------------------------------|
| Cell parameters from 935 reflections      |
| $\theta = 1.8 - 26.0^{\circ}$             |
| $\mu = 1.54 \text{ mm}^{-1}$              |
| T = 296 (2)  K                            |
| Block, orange                             |
| $0.25 \times 0.22 \times 0.10 \text{ mm}$ |

| Bruker SMART APEX CCD area-detector<br>diffractometer             | 3278 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                          | 3036 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                           | $R_{\rm int} = 0.034$                  |
| T = 296(2)  K                                                     | $\theta_{\text{max}} = 26.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                         | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Bruker, 2000) | $h = -11 \rightarrow 11$               |
| $T_{\min} = 0.699, T_{\max} = 0.861$                              | $k = -13 \rightarrow 13$               |
| 10784 measured reflections                                        | $l = -19 \rightarrow 19$               |
|                                                                   |                                        |

## Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                                | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.098$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0307P)^2 + 1.3308P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.10                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 3278 reflections                                               | $\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$                                 |
| 277 parameters                                                 | $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|      | x           | у           | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|-------------|--------------|-------------------------------|
| Zn1  | 0.71408 (5) | 0.64023 (4) | 0.21196 (3)  | 0.03166 (13)                  |
| O6   | 0.9487 (4)  | 0.4284 (3)  | 0.2011 (2)   | 0.0620 (11)                   |
| O5   | 0.7705 (4)  | 0.5388 (3)  | 0.1179 (2)   | 0.0434 (8)                    |
| O4   | 0.6849 (4)  | 0.5057 (3)  | -0.0439 (2)  | 0.0511 (9)                    |
| H4A  | 0.6873      | 0.5359      | 0.0025       | 0.077*                        |
| 03   | 1.5187 (4)  | -0.2597 (3) | -0.0536 (2)  | 0.0570 (10)                   |
| H3A  | 1.5603      | -0.2816     | -0.0042      | 0.085*                        |
| 02   | 1.5791 (3)  | -0.2637 (2) | 0.10891 (19) | 0.0375 (7)                    |
| 01   | 1.4725 (4)  | -0.1395 (3) | 0.17841 (18) | 0.0508 (8)                    |
| O4W  | 0.5362 (4)  | 0.5313 (3)  | 0.2060 (3)   | 0.0535 (9)                    |
| O3W  | 0.8865 (4)  | 0.7510 (3)  | 0.2132 (3)   | 0.0501 (8)                    |
| O2W  | 0.6659 (4)  | 0.7520 (3)  | 0.3064 (2)   | 0.0493 (9)                    |
| O1W  | 0.8398 (4)  | 0.5403 (3)  | 0.3147 (2)   | 0.0431 (8)                    |
| N2   | 1.0930 (4)  | 0.1421 (3)  | 0.0030 (2)   | 0.0343 (7)                    |
| N1   | 1.1233 (4)  | 0.1052 (3)  | -0.0637 (2)  | 0.0334 (8)                    |
| C14  | 0.8672 (5)  | 0.4557 (4)  | 0.1291 (3)   | 0.0402 (11)                   |
| C13  | 0.8783 (5)  | 0.3916 (3)  | 0.0511 (3)   | 0.0335 (9)                    |
| C12  | 0.7874 (5)  | 0.4192 (4)  | -0.0312 (3)  | 0.0343 (9)                    |
| C11  | 0.7972 (5)  | 0.3553 (4)  | -0.1026 (3)  | 0.0414 (10)                   |
| H11A | 0.7367      | 0.3751      | -0.1571      | 0.050*                        |
| C10  | 0.8949 (5)  | 0.2633 (4)  | -0.0935 (3)  | 0.0372 (9)                    |
| H10A | 0.8989      | 0.2196      | -0.1414      | 0.045*                        |
| С9   | 0.9877 (5)  | 0.2357 (3)  | -0.0127 (3)  | 0.0316 (9)                    |
| C8   | 0.9781 (5)  | 0.2998 (4)  | 0.0582 (3)   | 0.0370 (10)                   |
| H8A  | 1.0406      | 0.2807      | 0.1123       | 0.044*                        |
| C7   | 1.2236 (4)  | 0.0099 (3)  | -0.0537 (3)  | 0.0322 (9)                    |
| C6   | 1.2416 (5)  | -0.0349 (4) | -0.1298 (3)  | 0.0396 (10)                   |
| H6A  | 1.1871      | -0.0025     | -0.1822      | 0.048*                        |
| C5   | 1.3378 (6)  | -0.1259 (4) | -0.1296 (3)  | 0.0473 (12)                   |
| H5A  | 1.3469      | -0.1558     | -0.1812      | 0.057*                        |
| C4   | 1.4210 (5)  | -0.1727 (4) | -0.0517 (3)  | 0.0372 (10)                   |
| C3   | 1.4032 (4)  | -0.1293 (4) | 0.0259 (2)   | 0.0301 (8)                    |
| C2   | 1.3051 (5)  | -0.0383 (3) | 0.0244 (3)   | 0.0316 (9)                    |
| H2A  | 1.2936      | -0.0093     | 0.0758       | 0.038*                        |
| C1   | 1.4901 (5)  | -0.1794 (4) | 0.1108 (3)   | 0.0321 (9)                    |
| H1WA | 0.872 (6)   | 0.496 (5)   | 0.283 (4)    | 0.062 (18)*                   |
| H3WA | 0.872 (7)   | 0.779 (5)   | 0.170 (4)    | 0.05 (2)*                     |
| H4WA | 0.507 (9)   | 0.504 (6)   | 0.159 (5)    | 0.09 (3)*                     |
| H2WA | 0.597 (7)   | 0.802 (5)   | 0.260 (4)    | 0.073 (19)*                   |
| H3WB | 0.921 (7)   | 0.796 (6)   | 0.250 (5)    | 0.07 (2)*                     |
| H4WB | 0.545 (7)   | 0.488 (5)   | 0.253 (4)    | 0.066 (19)*                   |
| H1WB | 0.895 (8)   | 0.580 (6)   | 0.359 (4)    | 0.08 (2)*                     |
| H2WB | 0.619 (8)   | 0.703 (6)   | 0.330 (5)    | 0.09 (3)*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Zn1 | 0.0368 (2)  | 0.0289 (2)  | 0.0260 (2)  | 0.0034 (2)   | 0.00388 (19) | 0.0022 (2)   |
| O6  | 0.076 (2)   | 0.070 (2)   | 0.0266 (18) | 0.045 (2)    | -0.0057 (17) | -0.0064 (16) |
| O5  | 0.0494 (18) | 0.0396 (16) | 0.0341 (18) | 0.0196 (14)  | 0.0009 (13)  | -0.0061 (13) |
| O4  | 0.056 (2)   | 0.0503 (18) | 0.0372 (19) | 0.0296 (16)  | -0.0021 (15) | -0.0070 (15) |
| O3  | 0.076 (2)   | 0.062 (2)   | 0.0339 (19) | 0.0451 (19)  | 0.0164 (18)  | 0.0057 (16)  |
| O2  | 0.0453 (16) | 0.0341 (14) | 0.0297 (16) | 0.0143 (13)  | 0.0057 (13)  | 0.0039 (12)  |
| O1  | 0.068 (2)   | 0.0524 (16) | 0.0286 (15) | 0.0272 (18)  | 0.0085 (16)  | 0.0010 (16)  |
| O4W | 0.051 (2)   | 0.059 (2)   | 0.039 (2)   | -0.0120 (16) | -0.0032 (17) | 0.0131 (19)  |
| O3W | 0.060 (2)   | 0.055 (2)   | 0.030 (2)   | -0.0195 (17) | 0.0066 (17)  | 0.001 (2)    |
| O2W | 0.061 (2)   | 0.051 (2)   | 0.034 (2)   | 0.0169 (18)  | 0.0105 (16)  | 0.0009 (15)  |
| O1W | 0.0504 (19) | 0.0440 (17) | 0.0321 (19) | 0.0105 (15)  | 0.0077 (14)  | 0.0042 (14)  |
| N2  | 0.0380 (17) | 0.0340 (15) | 0.0279 (17) | 0.0107 (16)  | 0.0052 (14)  | 0.0014 (16)  |
| N1  | 0.0393 (18) | 0.0326 (17) | 0.0265 (18) | 0.0100 (14)  | 0.0070 (15)  | 0.0019 (13)  |
| C14 | 0.044 (2)   | 0.037 (2)   | 0.036 (3)   | 0.0115 (19)  | 0.0051 (19)  | -0.0071 (19) |
| C13 | 0.039 (2)   | 0.0294 (19) | 0.026 (2)   | 0.0077 (17)  | -0.0003 (18) | -0.0018 (15) |
| C12 | 0.032 (2)   | 0.034 (2)   | 0.032 (2)   | 0.0076 (18)  | 0.0013 (16)  | 0.0019 (18)  |
| C11 | 0.042 (2)   | 0.048 (2)   | 0.027 (2)   | 0.014 (2)    | -0.0004 (18) | 0.000 (2)    |
| C10 | 0.047 (2)   | 0.039 (2)   | 0.023 (2)   | 0.0071 (19)  | 0.0049 (17)  | -0.0056 (17) |
| C9  | 0.035 (2)   | 0.0302 (19) | 0.028 (2)   | 0.0089 (16)  | 0.0061 (17)  | -0.0002 (16) |
| C8  | 0.043 (2)   | 0.037 (2)   | 0.026 (2)   | 0.0108 (19)  | 0.0030 (18)  | -0.0017 (18) |
| C7  | 0.035 (2)   | 0.0308 (19) | 0.029 (2)   | 0.0071 (16)  | 0.0067 (17)  | 0.0030 (17)  |
| C6  | 0.047 (3)   | 0.040 (2)   | 0.026 (2)   | 0.015 (2)    | 0.0027 (18)  | 0.0056 (18)  |
| C5  | 0.068 (3)   | 0.049 (2)   | 0.023 (2)   | 0.020 (3)    | 0.009 (2)    | -0.001 (2)   |
| C4  | 0.046 (2)   | 0.034 (2)   | 0.031 (2)   | 0.0162 (18)  | 0.0108 (19)  | 0.0018 (17)  |
| C3  | 0.035 (2)   | 0.0271 (17) | 0.0262 (19) | 0.0065 (17)  | 0.0064 (16)  | 0.0032 (17)  |
| C2  | 0.035 (2)   | 0.0306 (19) | 0.029 (2)   | 0.0051 (17)  | 0.0088 (17)  | -0.0001 (17) |
| C1  | 0.036 (2)   | 0.0322 (19) | 0.026 (2)   | 0.0039 (17)  | 0.0059 (17)  | -0.0014 (16) |

# Geometric parameters (Å, °)

| Zn1—O3W              | 2.055 (4) | N2—N1    | 1.267 (5) |
|----------------------|-----------|----------|-----------|
| Zn1—O4W              | 2.069 (4) | N2—C9    | 1.425 (5) |
| Zn1—O1W              | 2.075 (3) | N1—C7    | 1.413 (5) |
| Zn1—O2 <sup>i</sup>  | 2.086 (3) | C14—C13  | 1.487 (6) |
| Zn1—O5               | 2.097 (3) | C13—C8   | 1.385 (6) |
| Zn1—O2W              | 2.132 (3) | C13—C12  | 1.396 (6) |
| O6—C14               | 1.236 (6) | C12—C11  | 1.389 (6) |
| O5—C14               | 1.286 (5) | C11—C10  | 1.370 (6) |
| O4—C12               | 1.350 (5) | C11—H11A | 0.9300    |
| O4—H4A               | 0.8200    | С10—С9   | 1.383 (6) |
| O3—C4                | 1.356 (5) | C10—H10A | 0.9300    |
| O3—H3A               | 0.8200    | С9—С8    | 1.383 (6) |
| O2—C1                | 1.278 (5) | C8—H8A   | 0.9300    |
| O2—Zn1 <sup>ii</sup> | 2.086 (3) | C7—C2    | 1.387 (6) |

| O1—C1                    | 1.240 (5)   | C7—C6        | 1.389 (6) |
|--------------------------|-------------|--------------|-----------|
| O4W—H4WA                 | 0.80 (8)    | C6—C5        | 1.372 (6) |
| O4W—H4WB                 | 0.88 (7)    | С6—Н6А       | 0.9300    |
| O3W—H3WA                 | 0.74 (6)    | C5—C4        | 1.382 (6) |
| O3W—H3WB                 | 0.78 (7)    | С5—Н5А       | 0.9300    |
| O2W—H2WA                 | 1.02 (7)    | C4—C3        | 1.406 (6) |
| O2W—H2WB                 | 0.87 (7)    | C3—C2        | 1.381 (5) |
| O1W—H1WA                 | 0.83 (6)    | C3—C1        | 1.493 (5) |
| O1W—H1WB                 | 0.88 (7)    | C2—H2A       | 0.9300    |
| O3W—Zn1—O4W              | 177.75 (16) | C12—C13—C14  | 121.8 (4) |
| O3W—Zn1—O1W              | 92.90 (16)  | O4—C12—C11   | 117.9 (4) |
| O4W—Zn1—O1W              | 89.28 (15)  | O4—C12—C13   | 121.6 (4) |
| O3W—Zn1—O2 <sup>i</sup>  | 89.72 (15)  | C11—C12—C13  | 120.5 (4) |
| O4W—Zn1—O2 <sup>i</sup>  | 88.10 (14)  | C10-C11-C12  | 120.7 (4) |
| O1W—Zn1—O2 <sup>i</sup>  | 177.36 (13) | C10-C11-H11A | 119.7     |
| O3W—Zn1—O5               | 87.93 (16)  | C12-C11-H11A | 119.7     |
| O4W—Zn1—O5               | 91.35 (16)  | C11—C10—C9   | 119.8 (4) |
| O1W—Zn1—O5               | 94.52 (13)  | C11—C10—H10A | 120.1     |
| O2 <sup>i</sup> —Zn1—O5  | 85.89 (11)  | C9—C10—H10A  | 120.1     |
| O3W—Zn1—O2W              | 88.49 (17)  | C8—C9—C10    | 119.4 (4) |
| O4W—Zn1—O2W              | 92.21 (18)  | C8—C9—N2     | 116.8 (4) |
| O1W—Zn1—O2W              | 86.44 (15)  | C10—C9—N2    | 123.8 (4) |
| O2 <sup>i</sup> —Zn1—O2W | 93.32 (13)  | C9—C8—C13    | 122.0 (4) |
| O5—Zn1—O2W               | 176.33 (15) | С9—С8—Н8А    | 119.0     |
| C14—O5—Zn1               | 128.2 (3)   | C13—C8—H8A   | 119.0     |
| C12—O4—H4A               | 109.5       | C2—C7—C6     | 119.2 (4) |
| C4—O3—H3A                | 109.5       | C2—C7—N1     | 125.4 (4) |
| C1—O2—Zn1 <sup>ii</sup>  | 128.5 (3)   | C6—C7—N1     | 115.4 (3) |
| Zn1—O4W—H4WA             | 109 (6)     | C5—C6—C7     | 121.6 (4) |
| Zn1—O4W—H4WB             | 114 (4)     | С5—С6—Н6А    | 119.2     |
| H4WA—O4W—H4WB            | 122 (6)     | С7—С6—Н6А    | 119.2     |
| Zn1—O3W—H3WA             | 109 (5)     | C6—C5—C4     | 119.3 (4) |
| Zn1—O3W—H3WB             | 125 (5)     | С6—С5—Н5А    | 120.3     |
| H3WA—O3W—H3WB            | 111 (7)     | С4—С5—Н5А    | 120.3     |
| Zn1—O2W—H2WA             | 91 (3)      | O3—C4—C5     | 117.9 (4) |
| Zn1—O2W—H2WB             | 101 (5)     | O3—C4—C3     | 122.2 (4) |
| H2WA—O2W—H2WB            | 112 (5)     | C5—C4—C3     | 119.9 (4) |
| Zn1—O1W—H1WA             | 93 (4)      | C2—C3—C4     | 120.0 (3) |
| Zn1—O1W—H1WB             | 117 (4)     | C2—C3—C1     | 119.0 (4) |
| H1WA—O1W—H1WB            | 125 (6)     | C4—C3—C1     | 121.0 (4) |
| N1—N2—C9                 | 114.4 (3)   | C3—C2—C7     | 120.0 (4) |
| N2—N1—C7                 | 117.7 (3)   | С3—С2—Н2А    | 120.0     |
| O6—C14—O5                | 122.6 (4)   | С7—С2—Н2А    | 120.0     |
| O6—C14—C13               | 120.1 (4)   | O1—C1—O2     | 123.5 (4) |
| O5—C14—C13               | 117.3 (4)   | O1—C1—C3     | 119.8 (4) |
| C8—C13—C12               | 117.6 (4)   | O2—C1—C3     | 116.7 (4) |
| C8—C13—C14               | 120.6 (4)   |              |           |

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*+1, *y*-1, *z*.

## *Hydrogen-bond geometry (Å, °)*

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------|-------------|--------------|--------------|------------|
| O1W—H1WA···O6               | 0.84 (6)    | 1.86 (6)     | 2.677 (5)    | 168 (6)    |
| O1W—H1WB…N2 <sup>iii</sup>  | 0.88 (7)    | 2.32 (6)     | 3.058 (5)    | 143 (6)    |
| O2W—H2WA…O1 <sup>i</sup>    | 1.01 (6)    | 1.63 (6)     | 2.636 (5)    | 170 (6)    |
| O2W—H2WB···O3 <sup>iv</sup> | 0.87 (7)    | 2.44 (8)     | 2.997 (5)    | 123 (6)    |
| O3W—H3WA…N1 <sup>v</sup>    | 0.74 (6)    | 2.17 (6)     | 2.893 (5)    | 164 (5)    |
| O3W—H3WB…O6 <sup>iii</sup>  | 0.78 (8)    | 1.95 (7)     | 2.664 (5)    | 152 (7)    |
| O4W—H4WA…O4 <sup>vi</sup>   | 0.79 (7)    | 2.20 (8)     | 2.875 (6)    | 144 (8)    |
| O4W—H4WB…O1 <sup>iii</sup>  | 0.89 (6)    | 1.85 (6)     | 2.703 (5)    | 160 (6)    |
| O3—H3A…O2                   | 0.82        | 1.80         | 2.528 (4)    | 147        |
| O4—H4A…O5                   | 0.82        | 1.81         | 2.537 (4)    | 148        |
| C2—H2A…O1W <sup>vii</sup>   | 0.93        | 2.53         | 3.405 (6)    | 157        |
| ~                           |             |              |              |            |

Symmetry codes: (iii) -x+2, y+1/2, -z+1/2; (i) x-1, y+1, z; (iv) x-1, -y+1/2, z+1/2; (v) -x+2, -y+1, -z; (vi) -x+1, -y+1, -z; (vii) -x+2, -y+1/2, -z+1/2.



